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A generalized method for characterizing elastic
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The microstructure of cortical bone may exhibit either transverse isotropic or orthotropic sym-
metry, thus requiring either five or nine independent elastic stiffness coefficients (or com-
pliances), respectively, to describe its elastic anisotropy. Our previous analysis to describe this
anisotropy in terms of two scalar quantities for the transverse isotropic case is extended here
to include orthotropic symmetry. The new results for orthotropic symmetry are compared with
previous calculations using the transverse isotropic analysis on the same sets of anisotropic
elastic constants for bone, determined either by mechanical or by ultrasonic experiments. In
addition, the orthotropic calculation has been applied to full sets of orthotropic elastic stiffness
coefficients of a large variety of wood species. Although having some resemblance to
plexiform bone in microstructural organization, there is a dramatic difference in both the shear
and the compressive elastic anisotropy between the two materials: wood is at least one order

of magnitude more anisotropic than bone.

1. Introduction

Recently we presented a scheme for assessing the
degree of elastic anisotropy in cortical bone based on
calculating certain linear combinations of both the
elastic stiffness coefficients and the elastic compliances
for the specific elastic symmetry of the materials being
considered [1]. This evolved out of an earlier interest
in modelling the anisotropic properties of hydroxy-
apatite [2] as well as in using ultrasonic wave propaga-
tion techniques to study the elastic anisotropy both in
human bone [3-5] and in bovine bone [6].

First, to calculate the Voigt moduli for a polycrys-
talline material from the single crystal (or, in the case
of cortical bone, from the microstructural texture
based properties; see the footnote in [1]) elastic proper-
ties it 1S necessary to average over all spatial orienta-
tions of the single-crystal elastic stiffness coefficients
[7]. In this calculation three linear relationships among
the stiffness coefficients arise naturally [8]:

C“ + Cﬂ + 633 = 3A
€+ ¢y +¢p = 3B (1
€y + €55 + ¢ = 3C

Similarly, in order to obtain the Reuss moduli, it is
necessary to average over all possible spatial orienta-
tions of the single-crystal elastic compliances [9]. This
also results in three important linear relationships:

S1F S+ sy = 347
$p + sy + s, = 38 (2)
Saq + 855 + S = 3C7

0957-4530/90 $03.00 + .12
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Using these expressions, the Voigt bulk modulus,
K", and shear modulus, GV are given by

9K = 34 + 6B 56" = 4— B+ 3C
€)

and the equivalent Reuss bulk and shear moduli, Ky
and Gg, by

lj[KR =
51Gg =

34" + 68
44’ — 4B' + 3C’ (@)

It is clear from the method of averaging that
the Reuss bulk modulus, Ky, is just the inverse
of the volume compressibility, s, + §; + $;3 +
2(s;, + 53 + $33). As such, it is isotropic and an
invariant with respect to symmetry. Nine times the
Voigt bulk modulus, 9K, has the same general
form, albeit in stiffness coefficients rather than in com-
pliances, i.e. ¢ + ¢, + ¢35 + 2(cp + €13 + ¢p).
Thus, it also remains unchanged for the symmetries of
interest here.

The Voigt modulus also represents the upper bound
on the elastic properties of a multiphase system where
the strain is uniform across the interface, whereas the
Reuss modulus represents the lower bound on the
elastic properties where there is a uniform stress distri-
bution across the interface [10]. Thus, the differences
between the respective Voigt and Reuss moduli pro-
vide a measure of the compressive and shear anisotro-
pies [1, 8, 11, 12]. For convenience the quantities are
put into percentages so that the equations for the
percentage compressive and shear ¢lastic anisotropy
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are given by

100 K¥ — Kq
% (0 - .
A8 (%) K + K
100 G¥ — Gy
AF (%) = —p—— 2 5
A 5)

Clearly the values of AF (%) and AF (%) start at zero
(since K¥ = Kz and G' = Gy for isotropic sym-
metry) and increase as the anisotropy in the material
properties increases.

We applied these equations to the anisotropic elas-
tic stiffness coefficients from a number of different
experiments on human and bovine bone as well as to
those for hydroxyapatite and flurapatite [1]. However,
in all of these examples the materials were treated as
if they had transverse isotropic (hexagonal) symmetry,
even including those specimens which were reported
to have orthotropic (orthorhombic) symmetry. The
differences among the five independent coefficients
needed to characterize the former fully and the nine
independent coefficients needed to characterize the
latter fully can be seen by examining the respective
stiffness matrices given below.

Transverse isotropic

e, ¢y ¢35 0 0 0
c, ¢y ¢35 0 0 0
R R I C
0 0 0 ¢ 0 O
0 0 0 0 ¢4 O
(0 0 0 0 0 c
where ¢y = (¢;) — ¢1»)/2
Orthotropic
(¢, ¢ ¢35 0 0 01
cp Cp Gy 0 0 0
I B ci (0) 2 ™)
0 0 0 0 e¢5 O

In the orthotropic cases that we treated, the dif-
ferences between ¢;; and ¢y, ¢;3 and ¢y, ¢y and css,
and ¢, and (¢;; — ¢,)/2 were generally of the order of
10% or less, so that the average of each pair was used

as the appropriate value for the transverse isotropic
calculations. (Note that using the averages leaves K"
and GY unchanged.) However, this can bias the cal-
culation in some cases, as can be seen below by com-
paring the results for some of the same bone specimens
in both Table I (treated as transverse isotropic) and
Table III (treated as orthotropic). Also, there may be
times when the above differences are substantially
greater than in the specimens considered here. An
independent assessment of the differences in elastic
anisotropy between the two symmetries may be
important in understanding bone remodelling dynam-
ics such as might occur in ageing or at a bone-implant
interface. Finally, there are living materials in which
there is no question of the orthotropic symmetry
found in their elastic properties. Wood is clearly such
a material [13-15].

Because of these considerations, we present here the
proper elastic anisotropy calculations for orthotropic
symmetry using the Voigt and Reuss moduli cal-
culated by averaging over all nine independent stiff-
ness coefficients [16]. In order to appreciate the dif-
ferences between the two calculations, the equations
for K¥, GV and Ky, Gy for both symmetries are given
in the Appendix.

2. Results

2.1. Bone

Table I lists several sets of elastic stiffness coeflicients
for bones measured on the basis of orthotropic sym-
metry. Thus, nine independent coefficients, ¢;(O) are
provided for cach case. Also included are the five
transverse isotropic coefficients ¢;(TI) obtained from
the orthotropic constants, based on the following
redundancies introduced due to the assumption of
higher symmetry:

el (Th = (Tl = [¢,,(0) + ¢(0)]/2

c3(TI) = ¢55(0)

(T = ¢5(TD) = [cu(O) + ¢55(0)]/2

c3(TDH = en(Th = [¢2(0) + ¢3(0)])2

cp(ThH = ¢, (0) i (TIy = ¢, (TD) — 2¢4(TI)
(T = [e)(TI) — ¢,(TD]/2 e (TI) = ¢4(0)

®)

Either ¢, or ¢4 is adjustable in reducing the ortho-
tropic data to transverse isotropy, since they are
linearly dependent through the relationship ¢y =
(¢;1 — ¢19)/2; ¢, is considered to be the independent

TABLE II Mean values and standard deviations for the ¢,s measured by Van Buskirk and Ashman [17] at each aspect over the

entire length of bone (all values in GPa)

Anterior Medial Posterior Lateral
e 18.7 + 1.7 209 + 0.8 20.1 £ 1.0 20.6 + 1.6
2 204 + 1.2 223 4+ 1.0 222 413 22.0 £ 1.0
1 286 + 1.9 30.1 £23 308 + 1.0 305 + 1.1
Cag 6.73 + 0.68 6.45 + 0.35 6.78 + 1.0 6.27 + 0.28
Css 5.55 + 041 6.04 + 0.51 593 + 0.28 5.68 + 0.29
Ceo 4.34 + 0.33 4.87 £ 0.35 5.10 + 045 4.63 + 0.36
L 11.2 + 20 11.2 + 1.1 10.4 + 1.0 10.8 +£1.7
e 112 + 1.1 112 + 24 116 + 1.7 117 + 18
€3 104 + 14 11.5 £ 1.0 125 + 1.7 1.8 + 1.1
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term because it is one of the most accurately deter-
mined quantities. This is why two methods of comput-
ing ¢;, and ¢4 are provided in Equation 8. Thus, the
reductions have been computed twice: one set using
¢12(TT) and c4(TT) along with the rest of the ¢, (TI);
one set using ¢, (TI) and ¢4 (TT) along with the same
¢, (TT) as immediately above.

The elastic anisotropy equations have been applied
to both the orthotropic and the transverse isotropic
data sets listed in Table I. The results, along with the
Voigt and Reuss averages, are also presented in
Table I; the average of the two calculations for the
transverse isotropic A¥ (%) and AF (%) can be com-
pared with the respective orthotropic anisotropy
factors.

Table IT lists the average values and standard devia-
tions for each of the ¢;s taken over the full length of
bone measured for each aspect (anterior (A), medial
(M), posterior (P) and lateral (1)) from the data of
[17]. In Table III we present the Voigt and Reuss
averages and the compressive and shear anisotropy
factors at each level for each aspect for both ortho-
tropic symmetry (O) and transverse isotropy (TI)
using the values computed from Equation 8.

2.2. Wood

For wood, Table IV corresponds to Table T for
bone. Table 1V lists the Voigt and Reuss averages for
a number of wood species, along with the correspond-
ing values of the shear and compressive elastic aniso-
tropy factors computed on the basis of orthotropic
symmetry alone.

3. Discussion

3.1. Bone

Upon examining Table T it can be seen that with the
exception of the shear anisotropy for the Knets [18]
data (over 7% in both cases) the rest of the values are
quite small (below 3% in all cases). However, there is
a relatively large change in the compressive anisotropy
for the bones of Van Buskirk ez al. [19] and Knets [18]
in going from the measured orthotropic data to the
computation based on the higher symmetry. Since K¥

does not vary with respect to the change in symmetry,
it is Ky which dominates. The comparatively large
differences between ¢, and ¢,, and between ¢,; and ¢,;
co-operate here to produce this result.

However, it is in the analysis of the human femur
data of Van Buskirk and Ashman [17] presented in
Tables II and III where we are able to appreciate the
full significance of these scalar elastic anisotropy
factors. In this example we show how they can be used
in assessing the relative anisotropy to be found
throughout the length and around the various aspects
of such a long bone.

When dealing with bone as a transverse isotropic
material it is possible to get a rough measure of the
degree of anisotropy by examining the ratio of ¢y, to
¢y, for compression and of ¢, to ¢, for shear. Thus, it
is tempting to extend this simplistic scheme to the
orthotropic case. Of course, in this case one would
have to consider the ratios of ¢33 to each of ¢;; and ¢,,
and of ¢ to each of ¢y, and ¢,;5. Also, the off-diagonal
terms ¢,, ¢;; and ¢,; might also be considered, to see
whether these appeared to be anything unusual. How-
ever, this can entail considerable difficulties, as the
following analysis shows. The equations of anisotropy
for the orthotropic case are so involved that a super-
ficial compartmentalization of the set of orthotropic
stiffness coefficients into its three subsets — (¢, ¢y,
€33), (Cas Css, Coq) @nd (1, €13, €3) — and analysing
them separately can be quite misleading.

In Table II we have reported the mean and standard
deviation of each measured orthotropic stiffness
coefficient, ¢, (O), within each quadrant for the entire
length of bone. Thus, we can test whether there are
any significant differences between the corresponding
stiffness coefficients from aspect to aspect as we trans-
verse the length of bone. Table V presents those
parameters which were significant at p < 0.05 in an
analysis of the comparison between the means among
each pair of aspects over the entire length of bone
using a pairwise difference test on the corresponding
cys in each subset (¢, ¢, €33), (Cas, €55, Cg5) and (cyy,
€13, ¢33) as well as on the appropriate ratios of ¢;/c,,
within each subset. Table V also presents results of the

TABLE IV Voigt and Reuss averages and the compressive and shear anisotropy factors calculated from the data of Bucur [14] for

wood specimens from several tree species

Species KY K GY Gp A A
(GPa) (GPa) (GPa) (GPa) (%) (%)
P. abies* 2.38 0.839 0.890 0.0820 47.8 83.2
P. rubens* 1 3.10 0.984 0.843 0.115 51.8 75.9
P. rubens* 2 3.55 0.986 1.36 0.127 56.5 83.0
P. sitchensis* 1 2.30 0.771 1.00 0.127 49.7 77.5
P. sitchensis* 2 3.05 0.885 1.10 0.184 55.0 71.4
P. sitchensis* 3 3.21 0.659 1.01 0.117 64.9 79.2
P. engelmannii* 2.88 0.827 0.764 0.0540 55.3 86.7
A. pseudoplatanus* 4.11 2.19 .71 0.996 30.6 26.4
A. platanoides® 5.15 2.15 1.85 1.17 41.1 226
A. macrophyltum’ 1 2.60 1.32 1.58 0.885 32.7 28.3
A. macrophyllum® 2 2.67 1.16 1.53 0.690 39.3 317
A. saccharum? 1 4.60 2.10 1.57 0.662 37.3 40.8
A. saccharum® 2 3.62 1.33 1.76 0.819 46.4 36.5
A. rubrum? 2.37 1.76 1.29 0.728 14.8 277

*Resonance spruce (Picea spp.).
* Fiddleback maple (Acer spp.).



TABLE V Parameters which are significantly different when
comparing any two aspects from the Van Buskirk and Ashman {17]
data over the entire length of the femur (pairwise difference z-test)

Aspect Medial Posterior Lateral
Anterior ¢, (p < 0.03) — —
n(p < 0.02) ¢ (p < 0.05) ¢y (p < 0.05)
Ceo (P < 0.04) ¢ (p < 0.01) -
- e (p < 0.04) -
— cysfen (p < 0.04) —
A¥ (p < 0.01) AF (p < 0.005) A¥ (p < 0.01)
Medial X None None
Posterior X X None

same analysis for both the compressive and the shear
elastic anisotropy factors.

For the subset (c,;, ¢y, ¢33) there is a low level of
significance between the ¢;;s only for the A-M aspects
and between the c¢y,s for the A-M, A-P and A-L;
all other paired aspects display no significance.
Interestingly, there are no significant differences
between any pair of aspects for the ratio ¢;;/¢;; and
€y /€33 The subset (cy, €55, o) also exhibits very few
significant differences; in this case a low level for ¢,
between A-M aspects and a more significant one for
e between the A-P aspects. All other pairs of aspects
show no significant differences for all three c;. Also,
there are no significant differences between any pair of
aspects for the two ratios ¢y /ce and ¢ss/cg. Finally,
the subset (¢, €3, ¢y;) exhibits the same lack of
significant differences between each pair of aspects
except low ones between A-P both for the ratio ¢y /¢,
and for ¢,; itself.

Clearly, it is neither simple nor straightforward to
decide whether any important relationships exist
based on examining the ¢;s or the ¢;/c,, ratios in
Table V. Indeed, using only the ratios, one might
draw the conclusion that there are probably no signi-
ficant differences in the elastic anisotropy throughout
the bone, since only one of the ratios shows even a
small significant difference for only one aspect pair,
the A-P.

However, an examination of the elastic anisotropy
factors in Table V shows that this is not the case.
There are highly significant differences between the
anterior aspect and each of the other three aspects in
turn for the shear anisotropy case; there are no signifi-
cant differences for the compressive anisotropy
factors. Thus, with respect to shear anisotropy, the
anterior quadrant of this femur is significantly dif-
ferent from the other three quadrants, which are not
significantly different from each other.

Even if additional ¢; or ¢;/c,, ratios were found to
be significant or, even disregarding the factor of sig-
nificance, the difficulty of trying to estimate the degree
of elastic anisotropy in this term-by-term manner is

TABLE VI Correlation coefficients for A¥ and AF for various
¢; [y, ratios

epleys  culces  Cssles  csfcn enfen

A¥ (%) 046 0.35 0.07 0.06 0.72 0.79
AF (%)  0.55 0.51 0.46 0.15 0.39 0.47

1 fess

6

TABLE VII Correlation coefficients for 4* and A4F for the
individual c;s

n Cn €33 Cay Css Cep €12 €13 €3

A¥ (%) 040 033 0.00 0.02 0.22 011 043 035 055
A¥ (%) 0.60 0.63 0.18 021 051 055 032 0.19 036

compounded by not knowing the weighting factors to
assign to each term. This can be appreciated by exam-
ining the multivariate regression analysis on AF (%)
and AF (%), respectively, against all six ratios in the
correlation coefficients in Table VI, or against the
nine individual ¢;s in Table VII. The variations in
both tables show that an attempt at an a priori guess
at what distribution of weighting factors should be
used to work only with the raw data is really useless in
both cases.

Fortunately, it is not necessary to go through an
extended analysis of the data in order to come to such
a conclusion. An analysis of the 4¥ (%) and A¥ (%)
data on Table III leads to the same conclusion. The
values of AF (%) for the anterior specimens at levels
0.3, 0.4 and 0.6 are all outside 1 standard deviation
from the mean of all the values. Also, the values of 4*
(%) at levels 0.5 and 0.7 are also quite high, roughly
half a standard deviation higher than the mean.
Although there are three other specimens with A (%)
values also approximately half a standard deviation
higher than the mean, they are randomly distributed
and may represent either real variations only within a
given level of the bone or experimental artefacts in
sample preparation.

With regard to the A¥ (%) values there is one high
value which stands out, the posterior sample at level
0.3; a second, less significant, value is that for the
posterior sample at position 0.5. Again, these prob-
ably represent local variations within those levels
only. A similar observation can be made with respect
to anisotropy values lower than the respective means.
These few (34F (%); 44F (%)) are randomly dis-
tributed among the various quadrants and throughout
the length, thus representing local fluctuations in bone
properties.

It is thus clear that the anterior aspect is essentially
different from the other three quadrants throughout
the entire length measured, whereas in addition there
are a few local variations in the elastic anisotropy
between quadrants at the same levels and between
various levels for the same aspect.

It is interesting to note that the same set of observa-
tions could be made with the data based on the trans-
verse isotropic symmetry coefficients computed from
Equation 8. The AF (%) and A} (%) values for the
transverse isotropic cases in Table III provide identi-
cal variations in high and low anisotropies, as do the
full orthotropic cases. Thus, the same variations in
elastic anisotropy are obtained even when using the
higher symmetry on the basis that the differences
between ¢, and cy,, ¢4q and ¢ss, ;5 and cy3, and ¢ and
(c;1 — ¢12)/2 are due to extrinsic factors in the local
structural arrangement and not to an inherent change
in bone structure requiring a decrease in symmetry
from transverse isotropy.



In effect these calculations show that whether one
considers the full orthotropic set of data or works only
with transverse isotropy for the Haversian bone, the
relative elastic anisotropy is almost the same. This
is in marked contrast to the degree of anisotropy
observed for the various wood species presented in
Table IV.

3.2. Wood

It is clear why these wood specimens, with almost no
exceptions, are at least one decade more anisotropic
than bone for both the shear and the compressive
cases. The ratio of c3; to ¢, for the resonance spruces
(woods used for the tops of violins) runs from about
6 to 8, whereas for the fiddleback maples (woods used
for the backs of the violins) it runs from approxi-
mately 2.5 to 4. The ratio of ¢33 to ¢,, runs from about
9 to 14.5 for the former woods and from approximately
4 to 10.5 for the latter. This should be compared with
the narrow range found for ultrasonic measurements
in human bone of approximately 1.3 to 1.6 for both
¢y3/eq and e33/c5,, and in bovine plexiform (lamellar)
bone of about 1.5 to 1.6 for the same ratios.

Even more dramatic for the woods are the extremely
low values of ¢ when compared with ¢,, and css. This
is important in determining the shear anisotropy.
Rather than being comparable, as is in the case of
bone, ¢4 runs from about one-half to one-seventh of
C4y OF c55 for the fiddleback maples, whereas for the
IeSONance SPruces cq runs from about 1/14 to 1/22 of
Cy4 OT Css.

It is clear from these figures that although cortical
bone is elastically anisotropic, the degree of aniso-
tropy is much smaller than that found in another
living anisotropic material, wood, to which bone is
often compared; indeed, the logo of the Orthopaedic
Research Society and many other orthopaedic groups
is the wooden splint supporting a deformed tree.
Apparently the transverse stiffness in bone has proven
to be an important factor in the function of long
bones, whereas trees have evolved requiring more
flexibility and less need for such relatively high trans-
verse stiffness.

To reinforce some opening comments, we believe
that the use of these scalar measures of elastic aniso-
tropy has a number of significant future uses. The
principal use is to provide a measure of the kind of
macroscopic changes in elastic properties resulting
from the local microstructural resorption and remodell-
ing which occurs with ageing or at an implant-bone
interface, etc. Secondly, large deviations of either A*
(%) or AF (%) from the usual range of values found
for bone is probably a warning of something untoward
in the elastic stiffness data, either experimental
artefacts or something very unusual in the local bone
formation.
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Appendix
The Voigt and Reuss moduli for both transverse iso-
tropic and orthotropic symmetry are given below.

Transverse isotropic

Voigt

K'Y = (e + €1) + ey + ¢33)]/9

GY = [(cp + ¢12) = deps + 2035 + 12(cyy + €46)]/30

(AD)
Reuss
Ky = [es(e + ¢p) — 264))
(cip + ¢ — 4eps + 2¢5)
Gr = Siless(en + 1) — 2¢h]cances )

2lessen + ) — 2c5](ca + cg6)
+ [eaces (2o + cp) + dey + ¢33]/3}

(A2)
Orthotropic
Voigt
KY = ey 4 e + o5 + 2(cp + €15 + ¢5)]/9
GV = [oy 4 cn + 35 + 3(Ca + 055 + o)
—{en + o3 + en)l/15 (A3)
Reuss
Kr = Alleyen + eneys + eney
— 2c1105 + eneiy + e0p)
+ 2(cpeas + 03 + C3¢03)
— (¢t + iy + )]
Gr = 15/(4{(cricn + cney + ey + ¢en
+ enCis + e30p) — [en(en + c3)
+ enlen + ci3) + ciles + ep)l}/A
+ 3(Yew + ess + eg)) (Ad)
where
1 € €3
A = ley e | = ciepcyn + 20000

Ci3 €3 C33

— (encn + epchy + C33¢h) (A5)
Although the Reuss moduli in Equations A4 and AS
are expressed in terms of the stiffness coefficients, the
original equations are developed in terms of the elastic
compliances (Equations 2 and 4). Thus, the trans-
formation equations between the ¢;s and s;s are often
needed; these are presented below for convenience:

suo= (e — a3)/A $n = (epey — ¢y)/A
53 = (cneyn — ch)/A

S = (C303 — Cp033)/A S13 = (CinCys — C13¢)/A
$n = (cnnti; — exep)/A

S = ey Sss = 1fcss See = llces  (AD)

7
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