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The microstructure of cortical bone may exhibit either transverse isotropic or orthotropic sym- 
metry, thus requiring either five or nine independent elastic stiffness coefficients (or com- 
pliances), respectively, to describe its elastic anisotropy. Our previous analysis to describe this 
anisotropy in terms of two scalar quantities for the transverse isotropic case is extended here 
to include orthotropic symmetry. The new results for orthotropic symmetry are compared with 
previous calculations using the transverse isotropic analysis on the same sets of anisotropic 
elastic constants for bone, determined either by mechanical or by ultrasonic experiments. In 
addition, the orthotropic calculation has been applied to full sets of orthotropic elastic stiffness 
coefficients of a large variety of wood species. Although having some resemblance to 
plexiform bone in microstructural organization, there is a dramatic difference in both the shear 
and the compressive elastic anisotropy between the two materials: wood is at least one order 
of magnitude more anisotropic than bone. 

1. I n t r o d u c t i o n  
Recently we presented a scheme for assessing the 
degree of elastic anisotropy in cortical bone based on 
calculating certain linear combinations of both the 
elastic stiffness coefficients and the elastic compliances 
for the specific elastic symmetry of the materials being 
considered [1]. This evolved out of an earlier interest 
in modelling the anisotropic properties of hydroxy- 
apatite [2] as well as in using ultrasonic wave propaga- 
tion techniques to study the elastic anisotropy both in 
human bone [3-5] and in bovine bone [6]. 

First, to calculate the Voigt moduli for a polycrys- 
talline material from the single crystal (or, in the case 
of cortical bone, from the microstructural texture 
based properties; see the footnote in [t]) elastic proper- 
ties it is necessary to average over all spatial orienta- 
tions of the single-crystal elastic stiffness coefficients 
[7]. In this calculation three linear relationships among 
the stiffness coefficients arise naturally [8]: 

C11 -I- C22 -}- C33 = 3A 

c23 + c31 + el2 = 3B (1) 

C44 -'~ ¢55 -}- C66 = 3C 

Similarly, in order to obtain the Reuss moduli, it is 
necessary to average over all possible spatial orienta- 
tions of the single-crystal elastic compliances [9]. This 
also results in three important linear relationships: 

sll + s22 + s33 = 3A' 

s23 + s3L + slz = 3B' (2) 

s44 + sss + s66 = 3C' 

0957-4530/90 $03.00 + . t2 © 1990 Chapman and Hall Ltd. 

Using these expressions, the Voigt bulk modulus, 
K v, and shear modulus, G v are given by 

9K v = 3A + 6B 5G v = A - B + 3C 

(3) 

and the equivalent Reuss bulk and shear moduli, KR 
and GR, by 

I//~R = 3A' + 6 8 '  

5/Ga = 4A' - 4B' + 3C' (4) 

It is clear from the method of averaging that 
the Reuss bulk modulus, KR, is just the inverse 
of the volume compressibility, sl~ + s~a + s13 + 
2(s12 + s~3 + s23). As such, it is isotropic and an 
invariant with respect to symmetry. Nine times the 
Voigt bulk modulus, 9K v, has the same general 
form, albeit in stiffness coefficients rather than in com- 
pliances, i.e. Cll + c~2 + c13 + 2(c~2 + c13 -q- C23 ). 

Thus, it also remains unchanged for the symmetries of 
interest here. 

The Voigt modulus also represents the upper bound 
on the elastic properties of a multiphase system where 
the strain is uniform across the interface, whereas the 
Reuss modulus represents the lower bound on the 
elastic properties where there is a uniform stress distri- 
bution across the interface [10]. Thus, the differences 
between the respective Voigt and Reuss moduli pro- 
vide a measure of the compressive and shear anisotro- 
pies [1, 8, 11, 12]. For convenience the quantities are 
put into percentages so that the equations for the 
percentage compressive and shear elastic anisotropy 
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are given by 

100 K v - KR 
A~* (%)  - Kv+G 

100 G v - GR 
A * ( % )  -- G v + GR (5) 

Clearly the values of A* (%) and A* (%) start at zero 
(since K v = KR and GV = GR for isotropic sym- 
metry) and increase as the anisotropy in the material 
properties increases. 

We applied these equations to the anisotropic elas- 
tic stiffness coefficients from a number of different 
experiments on human and bovine bone as well as to 
those for hydroxyapatite and flurapatite [1]. However, 
in all of  these examples the materials were treated as 
if they had transverse isotropic (hexagonal) symmetry, 
even including those specimens which were reported 
to have orthotropic (orthorhombic) symmetry. The 
differences among the five independent coefficients 
needed to characterize the former fully and the nine 
independent coefficients needed to characterize the 
latter fully can be seen by examining the respective 
stiffness matrices given below. 
Transverse isotropic 

CI1 C12 C13 

C12 Cll C13 

C13 C13 C33 

[ e ]  = 
0 0 0 

0 0 0 

0 0 0 

where C66 ~-" (Cll - -  C12)/2 

Orthotropic 

[cij] = 

0 0 0 

0 0 0 

0 0 0 
(6) 

C44 0 0 

0 c44 0 

0 0 C66 

Cll C12 C13 0 0 0 

C12 C22 C23 0 0 0 

C13 C23 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 c55 0 

0 0 0 0 0 C66 

(7) 

In the orthotropic cases that we treated, the dif- 
ferences between C~l and c22 , c13 and c23, c44 and c55, 
and c66 and ( C I I  - -  C12)/2 were generally of the order of 
1 0% or less, so that the average of  each pair was used 

as the appropriate value for the transverse isotropic 
calculations. (Note that using the averages leaves K v 
and G v unchanged.) However, this can bias the cal- 
culation in some cases, as can be seen below by com- 
paring the results for some of the same bone specimens 
in both Table I (treated as transverse isotropic) and 
Table III (treated as orthotropic). Also, there may be 
times when the above differences are substantially 
greater than in the specimens considered here. An 
independent assessment of the differences in elastic 
anisotropy between the two symmetries may be 
important in understanding bone remodelling dynam- 
ics such as might occur in ageing or at a bone-implant 
interface. Finally, there are living materials in which 
there is no question of the orthotropic symmetry 
found in their elastic properties. Wood is clearly such 
a material [13-15]. 

Because of these considerations, we present here the 
proper elastic anisotropy calculations for orthotropic 
symmetry using the Voigt and Reuss moduli cal- 
culated by averaging over all nine independent stiff- 
ness coefficients [16]. In order to appreciate the dif- 
ferences between the two calculations, the equations 
for K v, G v and KR, GR for both symmetries are given 
in the Appendix. 

2. Resul ts  
2.1. B o n e  
Table I lists several sets of elastic stiffness coefficients 
for bones measured on the basis of orthotropic sym- 
metry. Thus, nine independent coefficients, cij(O) are 
provided for each case. Also included are the five 
transverse isotropic coefficients cij (TI) obtained from 
the orthotropic constants, based on the following 
redundancies introduced due to the assumption of 
higher symmetry: 

C~l(YI ) = c22(TI) = [Cll(O ) -}- c22(O)]/2 

c33(TI)  = c33(O) 

c44(TI) = c55(TI) = [c44(O) + c,5(O)]/2 

c l 3 ( T I )  = c23(TI  ) = [c~3(O ) q- c23(O)] /2  

c12(TI) = cm(O) c~2(TI) = c , j ( T I ) -  2c66(TI) 

c;6(TI) = [c~,(TI) - c~2(TI)]/2 c66(TI) = c66(O) 

(8) 

Either c m or % is adjustable in reducing the ortho- 
tropic data to transverse isotropy, since they are 
linearly dependent through the relationship c66 = 
(c1~ - c12) /2;  c ~  is considered to be the independent 

T A B L E  II Mean values and standard deviations for the c~js measured by Van Buskirk and Ashman  [17] at each aspect over the 
entire length of bone (all values in GPa) 

Anterior Medial Posterior Lateral 

ctL 18.7 ± 1.7 20.9 ± 0.8 20.1 ± 1.0 20.6 - 1.6 
c22 20.4 ± 1.2 22.3 ± 1.0 22.2 ± 1.3 22.0 ± 1.0 
c33 28.6 i 1.9 30.1 i 2.3 30.8 ± 1.0 30.5 i 1.1 
c44 6.73 + 0.68 6.45 i 0.35 6.78 ± 1.0 6.27 i 0.28 
%5 5.55 _+ 0.41 6.04 ± 0.51 5.93 + 0.28 5.68 ± 0.29 
c66 4.34 ± 0.33 4.87 ± 0.35 5.10 ± 0.45 4.63 _+ 0.36 
c12 11.2 ± 2.0 11.2 ± 1.1 10.4 -- 1.0 10.8 -t-1.7 
c~3 11.2 ± 1.1 11.2 i 2.4 11.6 ± 1.7 11.7 ± 1.8 
c s 10.4 i 1.4 11.5 ± 1.0 12.5 ± 1.7 11.8 ± 1.1 
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term because it is one of the most accurately deter- 
mined quantities. This is why two methods of comput- 
ing q2 and c66 are provided in Equation 8. Thus, the 
reductions have been computed twice: one set using 
c~2(TI) and c;6(TI) along with the rest of the cij(TI); 
one set using c~2(TI) and c66(TI ) along with the same 
c0(TI ) as immediately above. 

The elastic anisotropy equations have been applied 
to both the orthotropic and the transverse isotropic 
data sets listed in Table I. The results, along with the 
Voigt and Reuss averages, are also presented in 
Table I; the average of the two calculations for the 
transverse isotropic A* (%) and A* (%) can be com- 
pared with the respective orthotropic anisotropy 
factors. 

Table II lists the average values and standard devia- 
tions for each of the cijs taken over the full length of 
bone measured for each aspect (anterior (A), medial 
(M), posterior (P) and lateral (L)) from the data of 
[17]. In Table III we present the Voigt and Reuss 
averages and the compressive and shear anisotropy 
factors at each level for each aspect for both ortho- 
tropic symmetry (O) and transverse isotropy (TI) 
using the values computed from Equation 8. 

2.2. Wood 
For wood, Table IV corresponds to Table III for 
bone. Table IV lists the Voigt and Reuss averages for 
a number of wood species, along with the correspond- 
ing values of the shear and compressive elastic aniso- 
tropy factors computed on the basis of orthotropic 
symmetry alone. 

3. Discussion 
3.1. Bone 
Upon examining Table I it can be seen that with the 
exception of the shear anisotropy for the Knets [18] 
data (over 7% in both cases) the rest of the values are 
quite small (below 3% in all cases). However, there is 
a relatively large change in the compressive anisotropy 
for the bones of Van Buskirk e t  al. [19] and Knets [1 8] 
in going from the measured orthotropic data to the 
computation based on the higher symmetry. Since K v 

does not vary with respect to the change in symmetry, 
it is KR which dominates. The comparatively large 
differences between clL and c22 and between q3 and c23 
co-operate here to produce this result. 

However, it is in the analysis of the human femur 
data of Van Buskirk and Ashman [17] presented in 
Tables II and III where we are able to appreciate the 
full significance of these scalar elastic anisotropy 
factors. In this example we show how they can be used 
in assessing the relative anisotropy to be found 
throughout the length and around the various aspects 
of such a long bone. 

When dealing with bone as a transverse isotropic 
material it is possible to get a rough measure of the 
degree of anisotropy by examining the ratio of c33 to 
q l for compression and of c66 to c44 for shear. Thus, it 
is tempting to extend this simplistic scheme to the 
orthotropic case. Of course, in this case one would 
have to consider the ratios of c33 to each of Cl~ and c22 
and of c66 to each of c44 and c55. Also, the off-diagonal 
terms q2, q3 and c23 might also be considered, to see 
whether these appeared to be anything unusual. How- 
ever, this can entail considerable difficulties, as the 
following analysis shows. The equations of anisotropy 
for the orthotropic case are so involved that a super- 
ficial compartmentalization of the set of orthotropic 
stiffness coefficients into its three subsets - (ql,  c22, 
c33), (c44, c55, c66) and (q2, q3, c23) - and analysing 
them separately can be quite misleading. 

In Table I! we have reported the mean and standard 
deviation of each measured orthotropic stiffness 
coefficient, cij (O), within each quadrant for the entire 
length of bone. Thus, we can test whether there are 
any significant differences between the corresponding 
stiffness coefficients from aspect to aspect as we trans- 
verse the length of bone. Table V presents those 
parameters which were significant at p ~< 0.05 in an 
analysis of the comparison between the means among 
each pair of aspects over the entire length of bone 
using a pairwise difference test on the corresponding 
c•s in each subset (cll, c22, C33), (C44, C55, C66) and (cl2, 
q3, c23) as well as on the appropriate ratios of co./c~, . 

within each subset. Table V also presents results of the 

T A B L E  IV Voigt and Reuss averages and the compressive and shear anisotropy factors calculated from the data of Bucur [14] for 
wood specimens from several tree species 

Species KV KR G v GR Ac* A* 
(GPa) (GPa) (GPa) (GPa) (%) (%) 

P. abies* 2.38 0.839 0.890 0.0820 47.8 83.2 
P. rubens* 1 3.10 0.984 0.843 0.115 51.8 75.9 
P. rubens* 2 3.55 0.986 1.36 0.127 56.5 83.0 
P. sitchensis* 1 2.30 0.771 1.00 0.127 49.7 77.5 
P. sitchensis* 2 3.05 0.885 1.10 0.184 55.0 71.4 
P. sitchensis* 3 3.21 0.659 1.01 0.117 64.9 79.2 
P. engelmannii* 2.88 0.827 0.764 0.0540 55.3 86.7 
A. pseudoplatanus* 4.11 2.19 1.71 0.996 30.6 26.4 
A. platanoides + 5.15 2.15 1.85 1.17 41.1 22.6 
A. macrophyllum ? 1 2.60 1.32 1.58 0.885 32.7 28.3 
A. macrophyllumt 2 2.67 1.16 1.53 0.690 39.3 37.7 
A. saccharum? 1 4.60 2.10 1.57 0.662 37.3 40.8 
A. saccharum? 2 3.62 1.33 1.76 0.819 46.4 36.5 
A. rubrum t 2.37 1.76 1.29 0.728 14.8 27.7 

* Resonance spruce (Picea spp.). 
+Fiddleback maple (Acer spp.). 



TABLE V Parameters which are significantly different when 
comparing any two aspects from the Van Buskirk and Ashman [17] 
data over the entire length of the femur (pairwise difference t-test) 

Aspect Medial Posterior Lateral 

Anterior cll (p < 0.03) 
c22 (p < 0.02) c~2 (p < 0.05) c22 (p (0,05) 
C66 (p ( 0 . 0 4 )  C66 (p < 0.01) 

-- c23 (p < 0.04) - 
- -  C23/C12 (p < 0.04) -- 

A* (p < 0.01) A* (p < 0.005) A* (p < 0.01) 

Medial x None None 
Posterior x x None 

same analysis for both the compressive and the shear 
elastic anisotropy factors. 

For  the subset (Cll, c22, c33) there is a low level of  

significance between the C~lS only for the A - M  aspects 
and between the c22s for the A-M,  A - P  and A-L;  
all other paired aspects display no significance. 
Interestingly, there are no significant differences 
between any pair of  aspects for the ratio c11/c~3 and 
C22/C33. The subset (C44 , C55 , C66 ) also exhibits very few 
significant differences; in this case a low level for 1266 
between A - M  aspects and a more significant one for 
c66 between the A - P  aspects. All other pairs of  aspects 
show no significant differences for all three c U . Also, 
there are no significant differences between any pair of  
aspects for the two ratios C44/C66 and C55/£66. Finally, 
the subset (c~2, c13, c23) exhibits the same lack of 
significant differences between each pair of  aspects 
except low ones between A-P  both for the ratio c23/c~2 
and for c23 itself. 

Clearly, it is neither simple nor straightforward to 
decide whether any important  relationships exist 
based on examining the cijs or the Cij/Cmn ratios in 
Table V. Indeed, using only the ratios, one might 
draw the conclusion that there are probably no signi- 
ficant differences in the elastic anisotropy throughout 
the bone, since only one of the ratios shows even a 
small significant difference for only one aspect pair, 
the A-P.  

However, an examination of the elastic anisotropy 
factors in Table V shows that this is not the case. 
There are highly significant differences between the 
anterior aspect and each of the other three aspects in 
turn for the shear anisotropy case; there are no signifi- 
cant differences for the compressive anisotropy 
factors. Thus, with respect to shear anisotropy, the 
anterior quadrant of  this femur is significantly dif- 
ferent from the other three quadrants, which are not 
significantly different from each other. 

Even if additional c~j or c~j/Cm, ratios were found to 
be significant or, even disregarding the factor of  sig- 
nificance, the difficulty of  trying to estimate the degree 
of elastic anisotropy in this term-by-term manner is 

TABLE VI Correlation coefficients for A* and A* for various 
c~i/cm~ ratios 

CII/C33 C22/C33 C44/C66 C55/C66 C13/C12 C231Cl2 

A* (%) 0.46 0.35 0.07 0.06 0.72 0.79 
A* (%) 0.55 0.51 0.46 0.15 0.39 0.47 

TABLE VII Correlation coefficients for A* and A* for the 
individual ci~s 

C11 C22 C33 C44 C55 C66 C12 CI3 C23 

Ac* (%) 0.40 0.33 0.00 0.02 0.22 0.11 0.43 0.35 0.55 
A* (%) 0.60 0.63 0.18 0.21 0.51 0.55 0.32 0.19 0.36 

compounded by not knowing the weighting factors to 
assign to each term. This can be appreciated by exam- 
ining the multivariate regression analysis on A* (%) 
and A* (%), respectively, against all six ratios in the 
correlation coefficients in Table VI, or against the 
nine individual cijs in Table VII. The variations in 
both tables show that an at tempt at an a priori  guess 
at what distribution of weighting factors should be 
used to work only with the raw data is really useless in 
both cases. 

Fortunately, it is not necessary to go through an 
extended analysis of  the data in order to come to such 
a conclusion. An analysis of  the A* (%) and A* (%) 
data on Table I I I  leads to the same conclusion. The 
values of A* (%) for the anterior specimens at levels 
0.3, 0.4 and 0.6 are all outside 1 standard deviation 
from the mean of all the values. Also, the values of  As* 
(%) at levels 0.5 and 0.7 are also quite high, roughly 
half a standard deviation higher than the mean. 
Although there are three other specimens with A* (%) 
values also approximately half a standard deviation 
higher than the mean, they are randomly distributed 
and may represent either real variations only within a 
given level of the bone or experimental artefacts in 
sample preparation. 

With regard to the A* (%) values there is one high 
value which stands out, the posterior sample at level 
0.3; a second, less significant, value is that for the 
posterior sample at position 0.5. Again, these prob- 
ably represent local variations within those levels 
only. A similar observation can be made with respect 
to anisotropy values lower than the respective means. 
These few (3A* (%); 4A* (%)) are randomly dis- 
tributed among the various quadrants and throughout 
the length, thus representing local fluctuations in bone 
properties. 

It  is thus clear that the anterior aspect is essentially 
different from the other three quadrants throughout 
the entire length measured, whereas in addition there 
are a few local variations in the elastic anisotropy 
between quadrants at the same levels and between 
various levels for the same aspect. 

It  is interesting to note that the same set of  observa- 
tions could be made with the data based on the trans- 
verse isotropic symmetry coefficients computed from 
Equation 8. The A* (%) and A* (%) values for the 
transverse isotropic cases in Table I I I  provide identi- 
cal variations in high and low anisotropies, as do the 
full orthotropic cases. Thus, the same variations in 
elastic anisotropy are obtained even when using the 
higher symmetry on the basis that the differences 
between cH and c22 , c44 and c55, c13 and c23 , and c66 and 
(Cll - c12)/2 are due to extrinsic factors in the local 
structural arrangement and not to an inherent change 
in bone structure requiring a decrease in symmetry 
from transverse isotropy. 



In effect these calculations show that whether one 
considers the full orthotropic set of data or works only 
with transverse isotropy for the Haversian bone, the 
relative elastic anisotropy is almost the same. This 
is in marked contrast to the degree of anisotropy 
observed for the various wood species presented in 
Table IV. 

pour la Recherche Mhdicale for support during the 
summer of 1988. 

Appendix 
The Voigt and Reuss moduli for both transverse iso- 
tropic and orthotropic symmetry are given below. 

Transverse isotropic 
Voigt 

[2(ql + c12) 4- 4cl3 -Jr- C33)]/9 

[(Cll -{- C12) --  4CI3 "Jr- 2C33 q- 12(c44 + C66)]/30 

(A1) 

~--- [C33(C11 Jr- C12 ) - -  2c~3]/ 

(C11 Jr- CI2 -- 4Cl3 + 2C33 ) 

G R = 5{[C33(Cli -}- C12 ) - -  2C~31C44C66}/ 

2{[C33(C11 -I- C12 ) -- 2C~3](C44 -}- C66 ) 

jr_ [C44C66(2Cli Jr- C12 ) q- 4C13 Jr- C33]/3 } 

(A2) 
Orthotropic 
Voigt 

K v = [cli + C22 Jr- C33 -~- 2(¢12 .jr_ C13 Jr- C23)]/9 

GV ~--- [Cll "Jr- C22 -]- C33 ~- 3(c44 + c55 + c66) 

--  (C12 Jr- C13 -]- C23)]/15 (A3)  

3.2. Wood 
It is clear why these wood specimens, with almost no K v = 
exceptions, are at least one decade more anisotropic 
than bone for both the shear and the compressive GV = 
cases. The ratio of c33 to c11 for the resonance spruces 
(woods used for the tops of violins) runs from about Reuss 
6 to 8, whereas for the fiddleback maples (woods used Ks 
for the backs of the violins) it runs from approxi- 
mately 2.5 to 4. The ratio of c33 to c22 runs from about 
9 to 14.5 for the former woods and from approximately 
4 to 10.5 for the latter. This should be compared with 
the narrow range found for ultrasonic measurements 
in human bone of approximately 1.3 to 1.6 for both 
C33/CI1 and C33/C22 , and in bovine plexiform (lamellar) 
bone of  about 1.5 to 1.6 for the same ratios. 

Even more dramatic for the woods are the extremely 
low values of c66 when compared with c44 and c55. This 
is important in determining the shear anisotropy. 
Rather than being comparable, as is in the case of 
bone, c66 runs from about one-half to one-seventh of  
c44 or c55 for the fiddleback maples, whereas for the 
resonance spruces c66 runs from about 1/14 to 1/22 of Reuss 

C44 or css. K R  = 
It is clear from these figures that although cortical 

bone is elastically anisotropic, the degree of aniso- 
tropy is much smaller than that found in another 
living anisotropic material, wood, to which bone is 
often compared; indeed, the logo of the Orthopaedic 
Research Society and many other orthopaedic groups GR = 
is the wooden splint supporting a deformed tree. 
Apparently the transverse stiffness in bone has proven 
to be an important factor in the function of long 
bones, whereas trees have evolved requiring more 
flexibility and less need for such relatively high trans- 
verse stiffness, where 

To reinforce some opening comments, we believe 
that the use of these scalar measures of elastic aniso- 
tropy has a number of significant future uses. The 
principal use is to provide a measure of the kind of  
macroscopic changes in elastic properties resulting 
from the local microstructural resorption and remodell- 
ing which occurs with ageing or at an implant-bone 
interface, etc. Secondly, large deviations of either A* 
(%) or A* (%) from the usual range of values found 
for bone is probably a warning of something untoward 
in the elastic stiffness data, either experimental 
artefacts or something very unusual in the local bone 
formation. 
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A/[Cl1C22 + C22C33 --~ C33Cll 

-- 2(cllc23 + C22Cl3 + C33C12 ) 

Jr- 2(C12C23 + C23C13 Jv C13C12 ) 
3 

-- (C~2 -~ C73 -- C2-3) ] 

15/(4{(qlc22 + C22C33 -t- C33CI1 Jr- CllC23 

~- C22C13 -~- C33C12 ) --  [C12(C12 -[- C23 ) 

+ C23(C23 "q- C13 ) -~- C13(C13 Jr- C12)]}/a 

+ 3(1/c44 + 1/css + 1/c66)) (A4) 

CI 1 C12 C13 

m = C12 C22 C23 = C11C22C33 -[- 2C12C23C13 

C13 C23 C33 

-- (Cl1C23 + C22C~3 -~- C33C~2 ) (A5)  

Although the Reuss moduli in Equations A4 and A5 
are expressed in terms of the stiffness coefficients, the 
original equations are developed in terms of the elastic 
compliances (Equations 2 and 4). Thus, the trans- 
formation equations between the cijs and sus are often 
needed; these are presented below for convenience: 

$33 ~--- (C11C22 -- C~2)/A 

s12 = (c13c23 - q 2 c 3 ~ ) / A  s13 = (c,2c23 - Cl~C2~)/6 

s23 = (q2c13 - c23c11)/A 

s44 = 1/c44 s55 = 1/c55 s66 = 1/c66 (A6) 

7 
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